
The Word Vector Tool

User Guide

Operator Reference

Developer Tutorial

Michael Wurst
wurst@ls8.cs.uni-dortmund.de

University of Dortmund
Department of Computer Science

Chair of Artificial Intelligence
44221 Dortmund, Germany

http://wvtool.cs.uni-dortmund.de/

July 25, 2006

Copyright © 2001–2006

The Word Vector Tool and this Tutorial are published under the GNU Public License.

2

July 25, 2006

Contents

1 Introduction 5

2 Basic Concepts 7

2.1 Installation . 7

2.2 Using the WVTool as Java Library 7

2.3 Defining the Input . 8

2.4 Configuration . 9

2.5 Using Predefined Word Lists 12

3 The Word Vector Tool and Yale 15

3.1 Installation . 15

3.2 The WVTool Operator . 15

3.3 Text Classification, Clustering and Visualization 16

3.4 Parameter Optimization . 16

3.5 Creating and Maintaining Word Lists 16

3.5.1 Creating an Initial Word List 17

3.5.2 Applying a Word List 17

3.5.3 Updating a Word List 17

4 Advanced Topics 19

4.1 Web Crawling . 19

4.2 Using a Thesaurus . 21

4.2.1 Using a Simple Dictionary 21

4.2.2 Using Wordnet . 21

3

4 CONTENTS

5 Performance 23

6 Aknowledgements 25

7 Appendix A - Java Example 29

8 Appendix B - Yale Plugin Operator Reference 33

8.1 Basic operators . 34

8.2 Text . 35

8.2.1 StringToWordVector . 35

8.2.2 WVTool . 37

8.2.3 WVToolCrawler . 39

July 25, 2006

Chapter 1

Introduction

The Word Vector Tool is a flexible Java library for statistical language modeling.
In particular it is used to create word vector representations of text documents in
the vector space model [1]. In the vector space model, a document is represented
by a vector that denotes the relevance of a given set of terms for this document.
Terms are usually natural language words, but they can also be more general
entities, as words that are reduced to some linguistic base form or abstract
concept as ’<number>’ denoting any occurrence of a number in the text.

agent Java <number> ...

doc1.txt 1.0 0.3 0.0 ...

doc2.txt 0.9 0.0 0.6 ...

...

From the early days of automatic text processing and information retrieval, the
vector space model has played a very important role. It is the point of depar-
ture for many automatic text processing tasks, as text classification, clustering,
characterization and summarization as well as information retrieval [2].

The aim of the Java Word Vector Tool is to provide a simple to use, simple to
extend pure Java library for creating word vectors. It can easily be invoked from
any Java application. Furthermore, the tool is tightly integrated with the Yale

machine learning environment [3], allowing to perform diverse experiments using
textual data directly. In this way, the Word Vector Tool bridges a gap between
highly sophisticated linguistic packages as the GATE system [11] on the one side
and many partial solutions that are part of diverse text and information retrieval
applications on the other side. Closest related to the Word Vector Tool is the
Bow package [10], which is a C library, for the creation of word vectors and
clustering/classifying text.

In the next chapter, the basic concepts of the library are explained and how to use

5

6 CHAPTER 1. INTRODUCTION

it from Java applications. Chapter 3 discusses the Yale integration. In chapter
4 some advanced topics as using a web crawler or dictionaries are introduced.
Chapter 5 gives a brief overview of the performance of the Word Vector Tool on
a test corpus.

July 25, 2006

Chapter 2

Basic Concepts

2.1 Installation

To use the WVTool simply get a copy of the Word Vector Tool from the source-
forge WVTool homepage1, uncompress the archive and put the lib/wvtool.jar
file in your Java classpath. If you want to use additional functionality, as the
web crawler or the Wordnet integration put all other files that are stored in the
lib subdirectory into the classpath as well.

2.2 Using the WVTool as Java Library

There are two basic operations the Word Vector Tool is able to perform: 1. Cre-
ate a word list (the dimensions of the vector space) from a set of text documents
and 2. Create word vectors from a set of texts (given a word list). A word list
contains all terms used for vectorization together with some statistics (e.g. in
how many documents a term appears). The word list is needed for vectorization
to define which terms are considered as dimensions of the vector space and for
weighting purposes.

Both functions have two basic input parameters. First, an input list that tells
the system which text documents to process and second, a configuration object,
that tells the system which methods to use in the individual steps.

1http://wvtool.sourceforge.net

7

8 CHAPTER 2. BASIC CONCEPTS

2.3 Defining the Input

The input list tells the WVTool which texts should be processed. Every item in
the list contains the following information:

• A URI to the text resource. Currently this can be a local file/directory or
an URL
In the case of a directory, all files in this directory are processed (not
recursing to subdirectories). As the WVTool is extendable, other types of
file references could be used as well, as long as the user provides a method
that handles them (see 2.4)

• The language the document is written in (optional)

• The MIME type of the document (optional)

• The character encoding of the document, e.g. UTF-8 (optional)

• A class label
Texts can be assigned to classes, such as topics. This information is
usually used for automatic text classification, but could be relevant for
word vectorization as well. A class label index is ranging from 0 to m− 1,
where m is the number of classes (optional)

In the following example, an input list with three entries is created, two pointing
to documents on the local file system and one pointing to a webpage.

//Initialize the input list with three classes

WVTFileInputList list = new WVTFileInputList(3);

//Add entries

list.addEntry(

new WVTDocumentInfo("data/alt.atheism",

"txt","","english",0));

list.addEntry(

new WVTDocumentInfo("data/soc.religion.christian",

"txt","","english",1));

list.addEntry(

new WVTDocumentInfo("http://www-ai.cs.uni-dortmund.de",

July 25, 2006

2.4. CONFIGURATION 9

"html","","english",2));

Every entry is assigned to one class.

2.4 Configuration

The Word Vector Tool is written in a modular way, as to allow a maximum of
flexibility and extendibility. The general idea is, that vectorization and word list
creation consist of a fixed sequence of steps. For every step in the vectorization
process, the user states the Java class that should be used for this step. This
class can be one already included in the tool or a new one, written by the user.
The only constraint is, that it has to implement the corresponding interface of a
given step. In the following, these steps will be described in more detail together
with the available Java implementations:

• TextLoader

The TextLoader is responsible for opening a stream to the processed doc-
ument. Currently, the system provides one loader capable of reading from
local files and URLs. The corresponding class is called UniversalLoader
and should be sufficient for most applications.

Available classes:
UniversalLoader - Loading texts from local files and URLs (default)

• Decoder

If the text is encoded/wrapped (e.g. in HTML code), it has to be decoded
to plain text before vectorization. Currently, only plain text (no decoding
necessary) and XML based markup languages (tags are ignored) are sup-
ported.

Available classes:
TagIgnoringReader - Remove XML like tags
PlainReader - Does not modify the input (default)

• CodeMapper

In some cases the encoding of a text has to be mapped to another en-
coding. One might like to remove all the accents from a French text for
instance in this step. At the moment only a dummy class is available.

Available classes:
DummyCharConverter - does nothing (default)

The WVTool Tutorial

10 CHAPTER 2. BASIC CONCEPTS

• Tokenizer

The tokenizer splits the whole text into individual units. Tokenization
is a non-trivial task in general. Though for vectorization often a simple
heuristic is sufficient. Currently, only one tokenizer is available, which
uses the Unicode specification to decide whether a character is a letter.
All non-letter characters are assumed to be separators, thus the resulting
tokens contain only letters. Additionally, there is a tokenizer that creates
character n-grams from given tokens.

Available classes:
SimpleTokenizer - tokenization based on letters and non-letters (default)
NGramTokenizer - creates character n-grams

• WordFilter

In this step, tokens that should not be considered for vectorization are
filtered. These are usually tokens appearing very often (referred to as
"stopwords"). Standard English and German stopword lists are included.
You may also specify the stopsword using a file.

Available classes:
StopWordFilterFile - reads stop words from a file
StopWordsWrapper - a standard English stop word list (default)
StopWordsWrapperGerman - a standard German stop word list
DummyWordFilter - does not filter anything

• Reducer

Often it is useful to map different grammatical forms of a word to a com-
mon term. At the moment the system incorporates three different stem-
ming algorithms: a Porter Stemmer, a Lovins Stemmer and the Snowball
Stemmer package (providing stemmers for different languages, see [4]).
Also, there is the possibility to define additionally an own dictionary or to
use the Wordnet thesaurus (see 4.2).

Available classes:
LovinsStemmerWrapper - a Lovings stemmer (default)
PorterStemmerWrapper - a Porter Stemmer
SnowballStemmerWrapper - the Snowball stemmer package.You need to
define the language of each text that is parsed, as the corresponding stem-
mer is chosen according to this information
ToLowerCaseConverter - converts all characters in the word to lower
case
DictionaryStemmer - uses a manually specified dictionary to reduce
words to a base form
DummyStemmer - does not do anything

July 25, 2006

2.4. CONFIGURATION 11

WordNetHypernymStemmer - uses Wordnet to replace a word by its hy-
pernym
WordNetSynonymStemmer - uses Wordnet to replace a word by a repre-
sentative element of its synset

• VectorCreation

After the tokens have been counted, the actual vectors have to be created.
There are different schemes for doing this. They are based on the following
counts:

fij the number of occurrences of term i in document j

fdj the total number of terms occurring in document j

fti the total number of documents in which term i appears at least once

Based on these counts, currently four classes are available that measure
the “importance” of term i for document j, as denoted by vij :

TFIDF - the tf/idf measure with vij =
fij

fdj
log(|D|

fti
), where |D| is the

total number of documents. The resulting vector for each document is
normalized to the Euclidean unit length (default).

TermFrequency - the relative frequency of a term in a document, vij =
fij

fdj
. The resulting vector for each document is normalized to the Euclidean

unit length.

TermOccurrences - the absolute number of occurrences of a term vij =
fij The resulting vector is not normalized.

BinaryOccurrences - occurrences as a binary value vij =

{

1, fij > 0
0, else

The resulting vector is not normalized.

• Output

The output steps determines where the resulting vectors are written to.
Currently, only writing them to a file is supported. This step must be
configured, as there is no default where to write the vectors to.

The WVTool Operator allows you to specify which java class to use for a given
step. This can be done in a static way (for each document the same java class
is used) or dynamically (the java class is chosen depending on properties of
the document, such as the language or the encoding). The following are two
examples. The first example sets the java class for the output step in a static
way.

The WVTool Tutorial

12 CHAPTER 2. BASIC CONCEPTS

FileWriter outFile = new FileWriter("wv.txt");

WordVectorWriter wvw = new WordVectorWriter(outFile, true);

config.setConfigurationRule(WVTConfiguration.STEP_OUTPUT,

new WVTConfigurationFact(wvw));

The second example selects the the stemming algorithm dynamically, depending
on the language the text document is written in:

final WVTStemmer dummyStemmer =

new DummyStemmer();

final WVTStemmer porterStemmer =

new PorterStemmerWrapper();

config.setConfigurationRule(WVTConfiguration.STEP_STEMMER,

new WVTConfigurationRule() {

public Object getMatchingComponent(WVTDocumentInfo d)

throws Exception {

if(d.getContentLanguage().equals("english"))

return porterStemmer;

else

return dummyStemmer;

}

});

By writing your own classes (implementing the corresponding interface) you can
use your own methods instead of the ones provide with tool.

2.5 Using Predefined Word Lists

In some cases it is necessary to exactly define the dimensions of the vector space,
yet leaving the counting of terms and documents to the Word Vector Tool. This
can be achieved by calling the word list creation function with a list of String
values as in the following example (creating a word list with only two entries):

July 25, 2006

2.5. USING PREDEFINED WORD LISTS 13

List dimensions = new Vector();

dimensions.add("apple");

dimensions.add("pc");

wordList =

wvt.createWordList(list, config, dimensions, false);

The last parameter determines whether additional terms occurring in the texts
should be added to the word list.

The WVTool Tutorial

14 CHAPTER 2. BASIC CONCEPTS

July 25, 2006

Chapter 3

The Word Vector Tool and

Yale

Instead of using the WVTool as a library, you can use it directly with the Yale

System (Yet Another Learning Environment, see [3]). Yale provides a nice GUI
to specify the input and the configuration for vector creation. In the follow-
ing, it is assumed that you are familiar with the basic concepts of the Yale

environment.

3.1 Installation

The Word Vector Tool Plugin is installed by downloading the word vector plugin
jar file from the Yale homepage 1 and putting it into lib/plugins directory of
your Yale installation (see the Yale Handbook for details). After the plugin is
installed, you see an additional category for operators “Text” in the list of Yale

operators.

3.2 The WVTool Operator

The WVTool operator creates an ExampleSet from a collection of texts. The
output ExampleSet contains one row for each text document and one column
for each term.

The text collection must be specified in one of two ways:

1. If the parameter list texts is specified, each key-value pair must contain
the class label and the directory which holds the texts.

1http://yale.sourceforge.net

15

16 CHAPTER 3. THE WORD VECTOR TOOL AND YALE

2. Otherwise the operator expects an ExampleSet in its input. Up to four
regular attributes of this example set having special names and the label
are evaluated (see 2.3):

(a) document_source - A file, directory, or URL specifying a (set of)
text(s)

(b) type - The document type

(c) encoding - The content encoding

(d) language - The content language

(e) the label attribute - The class label of the text(s)

The parameters loader, inputfilter, charmapper, tokenizer, wordfilter, stemmer

and vectorcreation specify implementations that perform the respective steps
(see 2.4). Within Yale, only static configuration is possible.

3.3 Text Classification, Clustering and Visualization

As word vectors are stored in Yale ExampleSet, you can use them in almost
any kind of Yale experiment. For text classification, the class labels (e.g.
positive, negative) are defined in the WVTool operator, as described above.
Using clustering or dimensionality reduction, there is a possibility to directly
visualize text documents from the Yale Visualization panel. Just double click
on an item and a window pops up containing the corresponding text. This is
very useful, e.g. for outlier detection.

3.4 Parameter Optimization

As part of a Yale experiment, you can optimize the parameters of vector cre-
ation, such as the stemming algorithm or the pruning criteria. To do this, simply
surround the WVTool operator by a parameter optimization chain and perform
some evaluation within this chain, e.g. text classification.

3.5 Creating and Maintaining Word Lists

For many applications it is useful to create and maintain word lists (and thus the
dimensions of the vector space) manually. The Yale operator InteractiveAt-
tributeWeighting in combination with the WVTool and CorpusBasedWeighting
provides this functionality.

July 25, 2006

3.5. CREATING AND MAINTAINING WORD LISTS 17

3.5.1 Creating an Initial Word List

An initial word list can be created by using the following chain of operators: WV-
Tool, CorpusBasedWeighting and InteractiveAttributeWeighting. The WVTool
creates a initial word list. The CorpusBasedWeighting operator weights every
term in this list with respect to its relevance to the class label given as parameter.
The weight for a given term is calculated by summing up the (tf/idf) weights
for this term over all documents in the class. The objective of this method is
to give terms a high weight, that are important for a specific class. Using tf/idf
the other classes can be used as background knowledge about how important
a term is in the whole corpus (though the operator can be used with one class
only). As the InteractiveAttributeWeighting operator is reached a window pops
up that shows the word list. You can click on the bar above the table to sort
the terms either by their weight or alphabetically. Use the buttons beside every
term to select the keywords (by setting their weight to one or zero). After you
finished store the word list with the save button. The resulting file contains lines
of the following format:

<term>: <weight>

Hint: If you sort the terms according to their weight you can finish your selection
if you think that no relevant terms will appear below in the list.

3.5.2 Applying a Word List

You can apply a word list in two ways: To use the actual weights, first create word
vectors using the WVTool Operator and then use the AttributeWeightsLoader
and AttributesWeightsApplier on the resulting ExampleSet. To use the word list
only as a selection of relevant terms and leave it to the WVTool to actually
weight them, use the AttributeWeightsLoader before the WVTool. The WVTool
will create vectors that contain as dimensions only terms in the word list, that
have a weight larger than zero.

3.5.3 Updating a Word List

If you add new documents to your corpus, usually additional terms will be relevant
and should be added to the word list. Use the experiment to create a word list
described in 3.5.1. After the InteractiveAttributeWeighting operator pops up, use
the load function to load your original word list. Make sure that the “overwrite”
parameter is set. In this way, values from the file will overwrite the ones that are
generated by the WVTool. All terms for which you already decided that they
should or should not be in the word list are preserved. All new terms will be
between these values in the list (sorted according to their weight).

The WVTool Tutorial

18 CHAPTER 3. THE WORD VECTOR TOOL AND YALE

You can also use the combo box to choose which weights should be displayed.
After you finished simply save the word list as described above.

July 25, 2006

Chapter 4

Advanced Topics

4.1 Web Crawling

The Word Vector Tool contains an interface to the WebSPHINX web crawler
package [7]. This enables you to obtain word vectors from webcontent easily.
The WebSPHINX package is very flexible and allows to configure the behavior of
the crawler in various ways. To use it with the Word Vector Tool, you must first
create a subclass of the abstract class WVToolCrawler. The additional methods
you must implement determine whether a link should be visited and whether a
page should be processed by the Word Vector Tool. The following is an example.

WVToolCrawler test = new WVToolCrawler() {

protected boolean vectorizePage(Page page) {

String url = page.getURL().toExternalForm();

return url.contains("PERSONAL")&&

url.contains("html")&&

(!url.contains("index"));

}

public boolean shouldVisit(Link link) {

return link.getPageURL().

toExternalForm().contains("PERSONAL");

}

};

URL start = new URL("http://www-ai.cs.uni-dortmund.de/PERSONAL");

19

20 CHAPTER 4. ADVANCED TOPICS

test.addRoot(new Link(start));

test.setMaxDepth(2);

The crawler visits only links, that point to an URL containing the term ‘PER-
SONAL’. A page is processed if its URL contains ‘PERSONAL’ and ‘html’ but
does not contain ‘index’. The crawler starts at a page provided by the add-
Root method. Also, the maximal depth of the crawler is set to 2. There are
many other possible checks in the WebSPHINX package, e.g. based on regular
expressions. Refer to the javadoc of WebSPHINX for more information.

Given the personalized web crawler, you need to create an input list based on
this crawler using the following code:

WVTInputList list = new CrawledInputList(test);

You can now use this input list just as the file input list.

The crawler can also be invoked from Yale.

To do so, add the WVToolCrawler operator to your experiment. Using the
parameter urls, you may define a set of crawlers, each associated with one class
label. Each crawler is defined by specifying different parameters. The following
parameters are available. Note, that you can use one parameter more than once.

start_url A url from which this crawler should start crawling (you can use this
parameter more than once)

max_depth The maximum depth to which the crawler should follow links

Also, you can state some constraints on whether the crawler should follow a link
and on whether it should vectorize a page. The following conditions are possible:

url_visit A link is only visited, if its target url matches the regular expression
stated in this parameter.

link_text_visit A link is only visited, if its link text matches the regular ex-
pression stated in this parameter.

url_vectorize A page is only processed, if its url matches the regular expression
stated in this parameter.

July 25, 2006

4.2. USING A THESAURUS 21

title_vectorize A page is only processed, if its title matches the regular expres-
sion stated in this parameter.

content_vectorize A page is only processed, if its content contains a substring
that matches the regular expression stated in this parameter.

If several conditions are stated, all of them must be fulfilled.

4.2 Using a Thesaurus

4.2.1 Using a Simple Dictionary

Instead of using a generic stemmer, you can provide the Word Vector Tool with
a file that explicitly states which words should be reduced to which base forms.
You may for example specify that ‘2000’ and ‘2K’ should be both reduced to
the same term. Another example is that you would like to replace all numbers
in the text by the term ‘<number>’.

The DictionaryStemmer allows you to apply such rules easily. It expects as input
a file in which each line has the following format:

<base_form>, <expression1> <expression2> ... <expressionn>

An expression is either a String or a regular expression. For regular expressions,
the Java RegExpression semantic is used 1. The system first matches a word
against the fixed terms specified in the file. If there are different matches, the
first one is used. If no match was found, the system checks the word against all
regular expressions in the order in which they appear in the file. Again, the first
match is used.

4.2.2 Using Wordnet

The Word Vector Tool contains an interface to the popular Wordnet thesaurus
[9] using the Java Wordnet Library (JWNL)[8]. Using a thesaurus has several
benefits for text processing. It is, for instance, possible to map words with same
meaning to a single term. It might also make sense to replace words a hypernym,
e.g. ‘monday’ by ‘weekday’.

1

The WVTool Tutorial

22 CHAPTER 4. ADVANCED TOPICS

To use Wordnet with the Word Vector Tool, you need a working installation
of Wordnet 2.12. Also, you need a configuration file for JWNL. An example
configuration file can be found in the sample directory. Usually it should be
sufficient to set the correct path to your Wordnet dictionary directory (setting the
parameter ‘dictionary_path’). For more information on configuring the JWNL
please refer to their homepage.

Currently, Wordnet is supported for the use in the stemmer step, thus to reduce
a word to some base form. The corresponding classes are called ‘WordNetHy-
pernymStemmer’ and ‘WordNetSynonymStemmer’. Both first resolve the synset
of the given word. As the part of speech is usually not known, the Word Vector
Tool tries to resolve it first as noun, then as verb, adjective and adverb. For the
stemmer based on synonyms, the word is reduced to the first representative of
the synset, for hypernym based stemming it is reduced to the first hypernym of
the synset.

2Can be obtained from [9]

July 25, 2006

Chapter 5

Performance

The Word Vector Tool has been designed and optimized for flexibility and ex-
tendibility rather than for efficiency. Nevertheless, it is well suited for large text
corpora in the sense that it keeps only the word list and the currently processed
text document in main memory. To give you an idea of the actual processing
speed of the Word Vector Tool the following table shows the processing times
for vectorizing the well known 20 newsgroups [6] data set, containing 20 000
news articles.

WVTool WVTool (Yale)

word list creation 138 s -

word vector creation 341 s -

both 479 s 642 s

For these experiments an Intel P4 with 2,6 GHz was used. For vector creation
the word list was pruned to contain only words appearing between 4 and 300
times.

23

24 CHAPTER 5. PERFORMANCE

July 25, 2006

Chapter 6

Aknowledgements

I would like to thank Ingo Mierswa and Simon Fischer for the first version of the
WVTool operator and the corresponding documentation, Stefan Haustein for
the TagIgnoringReader and the creators of the Snowball stemmer package[4],
KEA[5], Wordnet, the Java Wordnet Library and WebSPHINX for making their
source code publically available.

25

26 CHAPTER 6. AKNOWLEDGEMENTS

July 25, 2006

Bibliography

[1] G. Salton, A. Wong, C. S. Yang: A vector space model for automatic index-
ing, Commun. ACM, 18, p. 613-620, 1975.

[2] R. Baeza-Yates, B. Ribeiro-Neto: Modern Information Retrieval; Taschen-
buch - 464 Seiten - Addison Wesley, 1999.

[3] I. Mierswa and M. Wurst, R. Klinkenberg, M. Scholz and T. Euler. YALE:
Rapid Prototyping for Complex Data Mining Tasks. In Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD-06).

[4] http://snowball.tartarus.org/

[5] http://www.nzdl.org/Kea/

[6] http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups (originally
donated by T. Mitchell)

[7] http://www.cs.cmu.edu/ rcm/websphinx/

[8] http://jwordnet.sourceforge.net

[9] http://wordnet.princeton.edu

[10] A.K. McCallum: Bow: A toolkit for statistical lan-
guage modeling, text retrieval, classification and clustering,
http://www.cs.cmu.edu/~mccallum/bow, 1996.

[11] H. Cunningham, K. Humphreys, Y. Wilks, R. Gaizauskas: Software Infras-
tructure for Natural Language Processing, Proceedings of the Fifth Confer-
ence on Applied Natural Language Processing (ANLP-97), 1997.

27

28 BIBLIOGRAPHY

July 25, 2006

Chapter 7

Appendix A - Java Example

The following is a complete example of how to invoke the WVTool from Java.

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.FileWriter;

import java.util.List;

import java.util.Vector;

import edu.udo.cs.wvtool.config.WVTConfiguration;

import edu.udo.cs.wvtool.config.WVTConfigurationFact;

import edu.udo.cs.wvtool.generic.output.WordVectorWriter;

import edu.udo.cs.wvtool.generic.stemmer.DummyStemmer;

import edu.udo.cs.wvtool.generic.vectorcreation.TFIDF;

import edu.udo.cs.wvtool.generic.vectorcreation.TermOccurrences;

import edu.udo.cs.wvtool.main.WVTDocumentInfo;

import edu.udo.cs.wvtool.main.WVTInputList;

import edu.udo.cs.wvtool.main.WVTWordVector;

import edu.udo.cs.wvtool.main.WVTool;

import edu.udo.cs.wvtool.wordlist.WVTWordList;

/**

* An example program on how to use the Word Vector Tool.

*

* @author Michael Wurst

*

*/

public class WVToolExample {

29

30 CHAPTER 7. APPENDIX A - JAVA EXAMPLE

public static void main(String[] args) throws Exception {

// EXAMPLE HOW TO CALL THE PROGRAM FROM JAVA

// Initialize the WVTool

WVTool wvt = new WVTool(true);

// Initialize the configuration

WVTConfiguration config = new WVTConfiguration();

config.setConfigurationRule(WVTConfiguration.STEP_STEMMER,

new WVTConfigurationFact(new DummyStemmer()));

//Initialize the input list with two classes

WVTFileInputList list = new WVTFileInputList(2);

//Add entries

list.addEntry(

new WVTDocumentInfo("data/alt.atheism",

"txt","","english",0));

list.addEntry(

new WVTDocumentInfo("data/soc.religion.christian",

"txt","","english",1));

// Generate the word list

WVTWordList wordList = wvt.createWordList(list, config);

// Prune the word list

wordList.pruneByFrequency(2, 5);

// Store the word list in a file

wordList.storePlain(new FileWriter("wordlist.txt"));

// Alternatively: read an already created word list from a file

// WVTWordList wordList2 =

// new WVTWordList(

// new FileReader("/home/wurst/tmp/wordlisttest.txt"));

// Create the word vectors

July 25, 2006

31

// Set up an output filter (write sparse vectors to a file)

FileWriter outFile = new FileWriter("wv.txt");

WordVectorWriter wvw = new WordVectorWriter(outFile, true);

config.setConfigurationRule(

WVTConfiguration.STEP_OUTPUT,

new WVTConfigurationFact(wvw));

config.setConfigurationRule(WVTConfiguration.STEP_VECTOR_CREATION,

new WVTConfigurationFact(new TFIDF()));

// Create the vectors

wvt.createVectors(list, config, wordList);

// Alternatively: create word list and vectors together

//wvt.createVectors(list, config);

// Close the output file

wvw.close();

outFile.close();

// Just for demonstration: Create a vector from a String

WVTWordVector q =

wvt.createVector("cmu harvard net", wordList);

}

}

The WVTool Tutorial

32 CHAPTER 7. APPENDIX A - JAVA EXAMPLE

July 25, 2006

Chapter 8

Appendix B - Yale Plugin

Operator Reference

This chapter describes the Word Vector operators of the WVTool Yale plugin.

33

34 CHAPTER 8. APPENDIX B - YALE PLUGIN OPERATOR REFERENCE

8.1 Basic operators

July 25, 2006

8.2. TEXT 35

8.2 Text

This section describes the text operator of the Word Vector plugin.

8.2.1 StringToWordVector

Group: Text

Required input:

• ExampleSet

Generated output:

• ExampleSet

Parameters:

◦ default_content_type: The default content type if not specified by the
example set. (string; default: ”)

◦ default_content_encoding: The default content encoding if not speci-
fied by the example set. (string; default: ”)

◦ default_content_language: The default content language if not speci-
fied by the example set. (string; default: ”)

◦ inputfilter: Implementation class for step inputfilter.

◦ charmapper: Implementation class for step charmapper.

◦ tokenizer: Implementation class for step tokenizer.

◦ wordfilter: Implementation class for step wordfilter.

◦ stemmer: Implementation class for step stemmer.

◦ vectorcreation: Implementation class for step vectorcreation.

◦ wvt_configuration: If the simple configuration specified by loader, input-
filter, ... does not suffice, an implementation of WVTConfiguration may
be specified here. (string)

◦ prune_below: Prune words that appear at most that often. -1 for no
pruning. Alternatively you can provide a percentage value, denoting the
lowest document frequency in p words with the highest frequency. (string;
default: ’-1’)

◦ prune_above: Prune words that appear at least that often. -1 for no
pruning. Alternatively you can provide a percentage value, denoting the
highest document frequency in p words with the lowest frequency. (string;
default: ’-1’)

◦ min_chars: The minimum number of characters a word must contain to
be processed (-1 for any). Note that this parameter works only with word
filters derived from AbstractStopWordFilter (integer; 0-+∞; default: 4)

The WVTool Tutorial

36 CHAPTER 8. APPENDIX B - YALE PLUGIN OPERATOR REFERENCE

◦ ngrams: If this value is larger than zero, the operator creates ngrams of
the specified size. (integer; 0-+∞; default: 0)

◦ use_content_attributes: If set to true, the returned example set will con-
tain content type, encoding, and language attributes. (boolean; default:
false)

◦ input_word_list: Load a word list from this file instead of creating it from
the input data. (filename)

◦ output_word_list: Save the used word list into this file. (filename)

◦ id_attribute_type: Indicates if long ids (complete paths), short ids (last
part of the source name), or numerical ids will be used.

◦ filter_nominal_attributes: Indicates if nominal attributes should also be
filtered in addition to string attributes. (boolean; default: false)

◦ default_content_type: The default content type if not specified by the
example set. (string; default: ”)

◦ default_content_encoding: The default content encoding if not speci-
fied by the example set. (string; default: ”)

◦ default_content_language: The default content language if not speci-
fied by the example set. (string; default: ”)

◦ loader: Implementation class for step loader.

◦ inputfilter: Implementation class for step inputfilter.

◦ charmapper: Implementation class for step charmapper.

◦ tokenizer: Implementation class for step tokenizer.

◦ wordfilter: Implementation class for step wordfilter.

◦ stemmer: Implementation class for step stemmer.

◦ vectorcreation: Implementation class for step vectorcreation.

◦ wvt_configuration: If the simple configuration specified by loader, input-
filter, ... does not suffice, an implementation of WVTConfiguration may
be specified here. (string)

◦ prune_below: Prune words that appear at most that often. -1 for no
pruning. Alternatively you can provide a percentage value, denoting the
lowest document frequency in p words with the highest frequency. (string;
default: ’-1’)

◦ prune_above: Prune words that appear at least that often. -1 for no
pruning. Alternatively you can provide a percentage value, denoting the
highest document frequency in p words with the lowest frequency. (string;
default: ’-1’)

July 25, 2006

8.2. TEXT 37

◦ min_chars: The minimum number of characters a word must contain to
be processed (-1 for any). Note that this parameter works only with word
filters derived from AbstractStopWordFilter (integer; 0-+∞; default: 4)

◦ ngrams: If this value is larger than zero, the operator creates ngrams of
the specified size. (integer; 0-+∞; default: 0)

◦ use_content_attributes: If set to true, the returned example set will con-
tain content type, encoding, and language attributes. (boolean; default:
false)

◦ input_word_list: Load a word list from this file instead of creating it from
the input data. (filename)

◦ output_word_list: Save the used word list into this file. (filename)

◦ id_attribute_type: Indicates if long ids (complete paths), short ids (last
part of the source name), or numerical ids will be used.

Values:

• applycount: The number of times the operator was applied.

• looptime: The time elapsed since the current loop started.

• time: The time elapsed since this operator started.

Short description: Generates word vectors from string attributes.

Description: This operator takes an input example set and uses the values
of the string attributes as texts. String attributes are attributes with value
type “string”. The result is a set of attributes representing word occurrence
information from the text contained in the strings. The set of words (attributes)
is determined from the given data set. The parameters are the same as for the
WVToolOperator.

This operator is especially usefull if you already have text data represented in
a single example set file, e.g. an Arff file containing string attributes or other
example sets defining such string attributes. If you want to read text data directly
from files we recommend the WVToolOperator of the Word Vector Tool plugin.

8.2.2 WVTool

Group: Text

Generated output:

• ExampleSet

The WVTool Tutorial

38 CHAPTER 8. APPENDIX B - YALE PLUGIN OPERATOR REFERENCE

Parameters:

◦ default_content_type: The default content type if not specified by the
example set. (string; default: ”)

◦ default_content_encoding: The default content encoding if not speci-
fied by the example set. (string; default: ”)

◦ default_content_language: The default content language if not speci-
fied by the example set. (string; default: ”)

◦ loader: Implementation class for step loader.

◦ inputfilter: Implementation class for step inputfilter.

◦ charmapper: Implementation class for step charmapper.

◦ tokenizer: Implementation class for step tokenizer.

◦ wordfilter: Implementation class for step wordfilter.

◦ stemmer: Implementation class for step stemmer.

◦ vectorcreation: Implementation class for step vectorcreation.

◦ wvt_configuration: If the simple configuration specified by loader, input-
filter, ... does not suffice, an implementation of WVTConfiguration may
be specified here. (string)

◦ prune_below: Prune words that appear at most that often. -1 for no
pruning. Alternatively you can provide a percentage value, denoting the
lowest document frequency in p words with the highest frequency. (string;
default: ’-1’)

◦ prune_above: Prune words that appear at least that often. -1 for no
pruning. Alternatively you can provide a percentage value, denoting the
highest document frequency in p words with the lowest frequency. (string;
default: ’-1’)

◦ min_chars: The minimum number of characters a word must contain to
be processed (-1 for any). Note that this parameter works only with word
filters derived from AbstractStopWordFilter (integer; 0-+∞; default: 4)

◦ ngrams: If this value is larger than zero, the operator creates ngrams of
the specified size. (integer; 0-+∞; default: 0)

◦ use_content_attributes: If set to true, the returned example set will con-
tain content type, encoding, and language attributes. (boolean; default:
false)

◦ input_word_list: Load a word list from this file instead of creating it from
the input data. (filename)

◦ output_word_list: Save the used word list into this file. (filename)

July 25, 2006

8.2. TEXT 39

◦ id_attribute_type: Indicates if long ids (complete paths), short ids (last
part of the source name), or numerical ids will be used.

◦ texts: Specifies a list of class/directory pairs. (list)

Values:

• applycount: The number of times the operator was applied.

• looptime: The time elapsed since the current loop started.

• time: The time elapsed since this operator started.

Short description: Generates word vectors from text collections.

Description: This operator wraps the word vector tool by Michael Wurst,
creating an ExampleSet from a collection of texts. The output example set will
contain one row for each text and one column for each word (or for each word
stem). The text collection must be specified in one of two ways.

• If the parameter list texts is specified, each key-value pair must contain
the class (e.g. “positive”, “negative”, “interesting” etc.) and the value must
be a directory which holds the texts of this class.

• Otherwise the operator expects an ExampleSet in its input. Up to four
regular attributes of this example set having special names and the label
are evaluated:

“document_source” A file, directory, or URL specifying a (set of) text(s)

“type” The document type, e.g. xml or pdf

“encoding” The content encoding

“language” The content language

The label attribute The class of the text(s)

The parameters loader, inputfilter, charmapper, tokenizer, wordfilter, stemmer,
and vectorcreation specify implementations that perform the respective step.

8.2.3 WVToolCrawler

Group: Text

The WVTool Tutorial

40 CHAPTER 8. APPENDIX B - YALE PLUGIN OPERATOR REFERENCE

Generated output:

• ExampleSet

Parameters:

◦ default_content_type: The default content type if not specified by the
example set. (string; default: ”)

◦ default_content_encoding: The default content encoding if not speci-
fied by the example set. (string; default: ”)

◦ default_content_language: The default content language if not speci-
fied by the example set. (string; default: ”)

◦ loader: Implementation class for step loader.

◦ inputfilter: Implementation class for step inputfilter.

◦ charmapper: Implementation class for step charmapper.

◦ tokenizer: Implementation class for step tokenizer.

◦ wordfilter: Implementation class for step wordfilter.

◦ stemmer: Implementation class for step stemmer.

◦ vectorcreation: Implementation class for step vectorcreation.

◦ wvt_configuration: If the simple configuration specified by loader, input-
filter, ... does not suffice, an implementation of WVTConfiguration may
be specified here. (string)

◦ prune_below: Prune words that appear at most that often. -1 for no
pruning. Alternatively you can provide a percentage value, denoting the
lowest document frequency in p words with the highest frequency. (string;
default: ’-1’)

◦ prune_above: Prune words that appear at least that often. -1 for no
pruning. Alternatively you can provide a percentage value, denoting the
highest document frequency in p words with the lowest frequency. (string;
default: ’-1’)

◦ min_chars: The minimum number of characters a word must contain to
be processed (-1 for any). Note that this parameter works only with word
filters derived from AbstractStopWordFilter (integer; 0-+∞; default: 4)

◦ ngrams: If this value is larger than zero, the operator creates ngrams of
the specified size. (integer; 0-+∞; default: 0)

◦ use_content_attributes: If set to true, the returned example set will con-
tain content type, encoding, and language attributes. (boolean; default:
false)

July 25, 2006

8.2. TEXT 41

◦ input_word_list: Load a word list from this file instead of creating it from
the input data. (filename)

◦ output_word_list: Save the used word list into this file. (filename)

◦ id_attribute_type: Indicates if long ids (complete paths), short ids (last
part of the source name), or numerical ids will be used.

◦ urls: Specifies a list of URLs at which the crawler should start. (list)

Values:

• applycount: The number of times the operator was applied.

• looptime: The time elapsed since the current loop started.

• time: The time elapsed since this operator started.

Short description: Generates word vectors from web resources

Description: Obtains texts by crawling the web.

The WVTool Tutorial

